VARIMETER PRO

Over- and Undervoltage Relay
IL 9077, IP 9077, SL 9077, SP 9077

Function Diagram IL 9077

Circuit Diagram

IL 9077.12, SL 9077.12

- According to IEC/EN 60 255-1
- Identification of overvoltage, undervoltage and phase failure
- With asymmetry identification as an option
- Mains fault diagnostics with a number of LEDs
- Setting values for overvoltage and undervoltage can be set separately
- Large Setting Ranges $0.9 \ldots 1.3 \mathrm{U}_{\mathrm{N}}$ and $0.7 \ldots 1.1 \mathrm{U}_{\mathrm{N}}$
- Time delay variable between 0.1 ... 20 s
- Closed circuit operation
- No auxiliary voltage
- Independant of phase sequence
- As option with phase sequence detection
- Single-phase connection possible
- Optionally for 3P3W Systems
- 2 changeover contacts, at IP/SP 90772×2 changeover contacts
- Devices available in 2 enclosure versions:

I-model: depth 59 mm , with terminals at the bottom for installation systems and industrial distribution systems according to DIN 43880
S-model: depth 98 mm , with terminals at the top for cabinets with mounting plate and cable duct

- IL 9077, SL 9077: width 35 mm

IP 9077, SP 9077: width 70 mm

Approvals and Markings

*) only IL 9077

Applications

Monitoring of three-phase voltage systems to identify overvoltage and undervoltage, e.g. to monitor in-house generation equipment in accordance with VDE 0100.

Function

All 3 phase voltages are measured with N (L1 and L2 are measured against L3 in the case of equipment without an N connection). If they are in the acceptable range, a green LED goes on and the output relay is activated. If at least one phase exceeds the setting value for overvoltage (variable between $0.9 \ldots 1.3 U_{N}$) or if at least one phase falls short of the setting value for undervoltage (variable between $0.7 \ldots 1.1 \mathrm{U}_{\mathrm{N}}$), the output relay releases after the set time delay and the green LED goes off (fault state). 2 red LEDs then indicate the cause of the fault:

- Undervoltage " < U"
- Overvoltage " > U"

When all 3 phase voltages are below the chosen setting value for overvoltage and above the chosen setting value for undervoltage again, the relevant red LED goes out, the output relay is activated again and the green LED goes on again (acceptable state).
When the system returns to an acceptable state, there is a hysteresis of about 4% of the set value with both the set voltage thresholds.
On the unit with phase sequence detection IL/SL 9077/003 (only available without neutral) the wrong phase sequence is handled like undervoltage: The red LED "<U" is active and the output relay switches off.
The model with asymmetry identification IL/SL 9077/010 monitors the symmetry of the three-phase voltage system as well. When all 3 voltages are in the acceptable range between the two setting values here, but there is voltage asymmetry of more than about $6 \ldots 8 \%$, the output relay releases after the set time delay and the LED that is green when the state is acceptable goes red. (This model can, for example, also be used for immediate identification of the regeneration of failed phases by feedback).
The IP/SP 9077.39 is an under- and overvoltage relay with seperate output relays (each with 2 changeover contacts) for undervoltage and overvoltage monitoring. For every output a seperate delay 0.1 ... 20 s is adjustable.

Function Diagram IP 9077

IP 9077.39, SP 9077.39

IP 9077.39/001, SP 9077.39/001 IP 9077.39/002, SP 9077.39/002

Indicators	
green LED ____:	state
green LED goes red:	voltage asymmetry
	(only IL/SL 9077/010)
red LED " < U":	fault message / undervoltage
red LED " > U":	fault message / overvoltage

Notes

The terminals L1, L2 and L3 have to be bridged if the relay is used in single phase systems. (For 3p3w units L1 and L2 have to be linked).
The maximum fault delay amounts to only about 0.6 s if there is a total failure of phase L3.
The overvoltage output on IP/SP 9077.39/002 can only switch if the voltage between $L 2$ and L3 is $>0.7 U_{N}$ as the unit works without auxiliary supply.

Technical Data

Input

Nominal voltage \mathbf{U}_{N} : single-phase connection:

3-phase without neutral connection::

3-phase with neutral connection:

Voltage range:

Maximum overload:
Nominal consumption:
Nominal frequency:

Setting Ranges

Setting value for
overvoltage "> U":
Setting value for undervoltage "< U": Hysteresis:

Time delay:
Threshold for
asymmetry identification
IL/SL 9077/010:

Output

Contacts

IL/SL 9077.12
IP/SP 9077.39:
Contact material:
Switching voltage:
Thermal current $I_{\text {th }}$: Switching capacity
to AC 15:
NO contact:
NC contact:
Electrical life:
to AC 15 at 1 A, AC 230 V :
Short circuit strength
max. fuse rating:
Mechanical life:

General Data

Operating mode:

Temperature range:

Operation:
Storage:
Relative air humidity:
Altitude:

Clearance and creepage

distances

rated rated impulse voltage voltage / pollution degree:

EMC

Electrostatic discharge:
HF irradiation
$80 \mathrm{MHz} . .1 \mathrm{GHz}$:
1 GHz ... $2 \mathrm{GHz}:$
2 GHz ... 2.7 GHz :
Fast transients:
Surge voltages
between
wires for power supply: between wire and ground: Interference suppression:

AC $100 \mathrm{~V}, 115 \mathrm{~V}, 220 \mathrm{~V}, 230 \mathrm{~V}$,
AC $400 \mathrm{~V}, 415 \mathrm{~V}, 440 \mathrm{~V}, 500 \mathrm{~V}$
3AC $100 \mathrm{~V}, 115 \mathrm{~V}, 220 \mathrm{~V}, 230 \mathrm{~V}$, 3AC 400 V, $415 \mathrm{~V}, 440 \mathrm{~V}, 480 \mathrm{~V}, 500 \mathrm{~V}$

3/N AC $100 \mathrm{~V} / 58 \mathrm{~V} ; 3 / \mathrm{N}$ AC $110 \mathrm{~V} / 64 \mathrm{~V}$; $3 / \mathrm{N}$ AC $200 \mathrm{~V} / 115 \mathrm{~V}$; $3 / \mathrm{N}$ AC $220 \mathrm{~V} / 127 \mathrm{~V}$;
$3 / \mathrm{N}$ AC $230 \mathrm{~V} / 133 \mathrm{~V} ; 3 / \mathrm{N}$ AC $400 \mathrm{~V} / 230 \mathrm{~V}$;
$3 / \mathrm{N}$ AC $415 \mathrm{~V} / 240 \mathrm{~V} ; 3 / \mathrm{N}$ AC $440 \mathrm{~V} / 254 \mathrm{~V}$;
$3 / \mathrm{N}$ AC $480 \mathrm{~V} / 277 \mathrm{~V} ; 3 / \mathrm{N}$ AC $500 \mathrm{~V} / 290 \mathrm{~V}$
$0.7 \ldots 1.3 U_{N}$
$1.35 U_{N}$, permanent
approx. 8 VA (L3-N)
(approx. 16 VA for IP 9077)
50 / 60 Hz
variable between $0.9 \ldots 1.3 \mathrm{U}_{\mathrm{N}}$
variable between $0.7 \ldots 1.1 \mathrm{U}_{\mathrm{N}}$ approx. 4% of the set value in each case
variable between $0.1 \ldots 20 \mathrm{~s}$
approx. 6 ... 8% phase asymmetry

2 changeover contacts
2×2 changeover contacts
AgNi
AC 250 V
4 A

3 A / AC 230
IEC/EN 60 947-5-1
IEC/EN 60 947-5-1
IEC/EN 60 947-5-1
$\geq 1.5 \times 10^{5}$ switching cycles
4 AgL
IEC/EN 60 947-5-1
30×10^{6} switching cycles

Continuous operation
$-20 \ldots+60^{\circ} \mathrm{C}$
$-25 \ldots+60^{\circ} \mathrm{C}$
93% at $40^{\circ} \mathrm{C}$
< 2,000 m

4 kV / 2
8 kV (air)
$10 \mathrm{~V} / \mathrm{m} \quad$ IEC/EN 61 000-4-3
$10 \mathrm{~V} / \mathrm{m} \quad$ IEC/EN 61 000-4-3
$10 \mathrm{~V} / \mathrm{m} \quad$ IEC/EN 61 000-4-3
4 kV Limit value class B

IEC/EN 61 000-4-2

IEC/EN 61 000-4-4

IEC/EN 61 000-4-5
IEC/EN 61 000-4-5
IEC 60 664-1

EN 55011

Technical Data	
Degree of protection:	Housing: IP 40 IEC/EN 60529
	Terminals: IP 20 IEC/EN 60529
Housing:	Highly non-flammable thermoplastic with VO behaviour according to UL subject 94
Vibration resistance:	Amplitude 0.35 mm , frequency 10 ... 55 Hz IEC/EN 60 068-2-6
Climate resistance:	20/060/04 IEC/EN 60 068-1
Wire connection:	$2 \times 2.5 \mathrm{~mm}^{2}$ solid or
	$2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled DIN 46 228-1/-2/-3/-4
Wire fixing:	Flat terminals with self-lifting
	clamping piece IEC/EN 60 999-1
Fixing torque:	0.8 Nm
Mounting:	DIN rail IEC/EN 60715
Weight	
IL 9077:	110 g
SL 9077:	137 g
IP 9077:	210 g
SP 9077:	259 g

Dimensions

Width \mathbf{x} height x depth

IL 9077:
SL 9077:
IP 9077:
SP 9077:
$35 \times 90 \times 59 \mathrm{~mm}$
$35 \times 90 \times 98 \mathrm{~mm}$
$70 \times 90 \times 59 \mathrm{~mm}$
$70 \times 90 \times 98 \mathrm{~mm}$

Standard Types

IL $9077.123 / \mathrm{N}$ AC 400 / $230 \mathrm{~V} 0.1 \ldots 20 \mathrm{~s}$
Article number:

- Output:

0045788

- Nominal voltage U_{N} :
- De-energized on trip
- Variable time delay
- Width:

2 changeover contacts
$3 / \mathrm{N}$ AC 400/230 V
$0.1 \ldots 20 \mathrm{~s}$

SL 9077.12 3/N AC 400 / 230 V $0.1 \ldots 20$ s
Article number:
0054758

- Output:

2 changeover contacts
3/N AC 400/230 V

- De-energized on trip
- Variable time delay
$0.1 \ldots 20 \mathrm{~s}$
- Width:

35 mm

Variants	
I_ 9077._-_001:	3p3w, de-energized on trip IL 9077.12/003:
IL 9p3w, de-energized on trip	
IL 9077.12/010:	with phase sequence detection 3p4w, de-energized on trip
IL 9077.12/011:	with asymmetry detection 3p3w, de-energized on trip IL 9077.12/800:
	with asymmetry detection with fast respone and high
	overload at overvoltage.
IP 9077.39:	See datasheet IL 9077/800.
IP 9077.39/002:	3p4w, de-energized on trip
	3p3w, undervoltage output de-energized on trip, overvoltage output energized on trip

Ordering example for variants

